The Aldol Reaction
1. Stereochemical Outcomes
1. The Stereochemistry of the Ivanov and Reformatsky Reactions. I
Howard E. Zimmerman, Marjorie D. Traxler;
J. Am. Chem. Soc.; 1957; 79(8); 1920-1923.
http://pubs.acs.org:80/journals/jacsat/archive.cgi/jacsat/1957/79/i08/pdf/ja01565a041.pdf
2. Boat Transition State
2a. Stereoselective aldol condensations via boron enolates
D. A. Evans, E. Vogel, J. V. Nelson;
J. Am. Chem. Soc.; 1979; 101(20); 6120-6123.
http://pubs.acs.org:80/journals/jacsat/archive.cgi/jacsat/1979/101/i20/pdf/ja00514a045.pdf
2b. Stereoselective aldol condensations via boron enolates
D. A. Evans, J. V. Nelson, E. Vogel, T. R. Taber;
J. Am. Chem. Soc.; 1981; 103(11); 3099-3111.
http://pubs.acs.org:80/journals/jacsat/archive.cgi/jacsat/1981/103/i11/pdf/ja00401a031.pdf
2c. E- and Z-vinyloxyboranes (alkenyl borinates):
stereoselective formation and aldol condensation
Satoru Masamune, Sachio Mori, David Van Horn and Dee W. Brooks
Tetrahedron Letters; 1979; 20(19), 1665-1668.
2d. Stereoselective synthesis of beta-hydroxy-alpha-methylcarboxylic acid thiol esters via vinyloxyboranes
Masahiro Hirama and Satoru Masamune
Tetrahedron Letters; 1979; 20(24), 2225-2228.
2e. Stereoselective synthesis of beta-hydroxy-alpha-methylketones via z- and e-vinyloxyboranes generated directly from cyclohexyl ethyl ketone
David E. Van Horn and Satoru Masamune
Tetrahedron Letters; 1979; 20(24), 2229-2232.
2f. Use of the E-vinyloxyborane derived from S-phenyl propanethioate for stereospecific aldol-type condensation.
A simplified synthesis of the prelog-djerassi lactonic acid, Pages 3937-3940
Masahiro Hirama, David S. Garvey, Linda D.-L. Lu and Satoru Masamune
Tetrahedron Letters; 1979; 20(41), 3937-3940.
3. Soft Enolizatiion
3a. Dicyclohexyliodoborane/Triethylamine -
a new reagent which achieves the facile enolboration of esters and tertiary amides
Herbert C. Brown, and Kumaraperumal Ganesan
Tetrahedron Letters; 1992; 33(24), 3421-3424.
3b. Stereoselective aldol condensations via boron enolates
D. A. Evans, J. V. Nelson, E. Vogel, T. R. Taber;
J. Am. Chem. Soc.; 1981; 103(11); 3099-3111.
http://pubs.acs.org:80/journals/jacsat/archive.cgi/jacsat/1981/103/i11/pdf/ja00401a031.pdf
3c. Major effect of the leaving group in dialkylboron chlorides and triflates in controlling the stereospecific conversion of ketones into either [E]- or [Z]-enol borinates
Herbert C. Brown, Raj K. Dhar, Raman K. Bakshi, Paul K. Pandiarajan, Bakthan Singaram;
J. Am. Chem. Soc.; 1989; 111(9); 3441-3442
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1989/111/i09/pdf/ja00191a058.pdf
3d. Enolboration. 4. An examination of the effect of the leaving group (X) on the stereoselective enolboration of ketones with various R2BX/triethylamine.
New reagents for the selective generation of either Z or E enol borinates from representative ketones
Herbert C. Brown, Kumaraperumal Ganesan, Raj K. Dhar;
J. Org. Chem.; 1993; 58(1); 147-153.
http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1993/58/i01/pdf/jo00053a028.pdf
4. Open Transition State ...
4a. Acyclic stereoselection. 27. Simple diastereoselection in the lewis acid mediated reactions of enolsilanes with aldehydes.
Clayton H. Heathcock, , Kathleen T. Hug and Lee A. Flippin
Tetrahedron Letters; 1984; 25(52), 5973-5976.
4b. Acyclic stereoselection. 54. Extending the scope of the Evans asymmetric aldol reaction: preparation of anti and "non-Evans" syn aldols
Michael A. Walker, Clayton H. Heathcock;
J. Org. Chem.; 1991; 56(20); 5747-5750.
http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1991/56/i20/pdf/jo00020a006.pdf
5. Diastereoselective Aldol Reactions
5a. Concerning the diastereofacial selectivity of the aldol reactions of .alpha.-methyl chiral aldehydes and lithium and boron propionate enolates
William R. Roush;
J. Org. Chem.; 1991; 56(13); 4151-4157.
http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1991/56/i13/pdf/jo00013a015.pdf
5b. Stereoselective aldol condensations.
D. A. Evans; J. V. Nelson; T. R. Taber;
Top. Stereochem.; (1982); 13; 1-115.
5c. Double Stereodifferentiating Aldol Reactions.
The Documentation of "Partially Matched" Aldol Bond Constructions in the Assemblage of Polypropionate Systems
David A. Evans, Michael J. Dart, Joseph L. Duffy, Dale L. Rieger;
J. Am. Chem. Soc.; 1995; 117(35); 9073-9074.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i35/pdf/ja00140a027.pdf
6. Aldols with Chiral Enolates
6a. Stereoselective aldol condensation.
Use of chiral boron enolates
Satoru Masamune, William Choy, Kerdesky Francis A. J., Barbara Imperiali;
J. Am. Chem. Soc.; 1981; 103(6); 1566-1568.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1981/103/i06/pdf/ja00396a050.pdf
6b. Diastereo- and Enantioselective Aldol Reactions via alpha-silyl ketones,
Asymmetric Synthesis of the Aggregation Pheromone Sitophilure
D. Enders and B.B. Lohray
Angew. Chem. Int. Ed. Engl.; (1988); 27(4); 581-583.
7. Evan's imide technology
7a. Enantioselective aldol condensations. 2.
Erythro-selective chiral aldol condensations via boron enolates
D. A. Evans, J. Bartroli, T. L. Shih;
J. Am. Chem. Soc.; 1981; 103(8); 2127-2129.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1981/103/i08/pdf/ja00398a058.pdf
7b. Stereoselective reactions of chiral enolates.
Application to the synthesis of (+)-Prelog-Djerassi Lactonic Acid.
D. A. Evans, J. Bartroli;
Tetrahedron Lett.; (1982); 23(8); 807-810.
7c. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of .alpha.-substituted carboxylic acid derivatives
D. A. Evans, M. D. Ennis, D. J. Mathre;
J. Am. Chem. Soc.; 1982; 104(6); 1737-1739.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1982/104/i06/pdf/ja00370a050.pdf
8. Recall cleavage of Evan's auxiliaries
8a. Contrasteric carboximide hydrolysis with lithium hydroperoxide.
D. A. Evans, T. C. Britton, J. A. Ellman
Tetrahedron Lett.; (1987); 28(49); 6141-6144
8b. The total syntheses of the isodityrosine-derived cyclic tripeptides OF4949-III and K-13.
Determination of the absolute configuration of K-13.
David A. Evans and Jonathan A. Ellman
J. Am. Chem. Soc.; 1989; 111(3); 1063-1072.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1989/111/i03/pdf/ja00185a042.pdf
8c. Total synthesis of (+)-A83543A [(+)-lepicidin A].
David A. Evans and W. Cameron Black
J. Am. Chem. Soc.; 1993; 115( ); 4497-.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1993/115/i11/pdf/ja00064a011.pdf
8d. Facile reduction of ethyl thiol esters to aldehydes:
application to a total synthesis of (+)-neothramycin A methyl ether.
Tohru Fukuyama, Shao Cheng Lin, and Leping Li
J. Am. Chem. Soc.; 1990; 112( ); 7050-.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1990/112/i19/pdf/ja00175a043.pdf
9. Acetate Aldols
9a. Enantioselective aldol condensations.
2. Erythro-selective chiral aldol condensations via boron enolates
D. A. Evans, J. Bartroli, and T. L. Shih
J. Am. Chem. Soc.; 1981; 103(8); 2127 - 2129.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1981/103/i08/pdf/ja00398a058.pdf
9b. Camphor derivatives as chiral auxiliaries in asymmetric synthesis.
W. Oppolzer
Tetrahedron; (1987); 43(18); 1969-2004
9c. Diastereoselective Aldol Reaction with an Acetate Enolate:
2,6-Bis(2-isopropylphenyl)-3,5-dimethylphenol as an Extremely Effective Chiral Auxiliary
Susumu Saito, Keiko Hatanaka, Taichi Kano, Hisashi Yamamoto
Angew. Chem. Int. Ed.; (1998); 37(24); 3378-3381.
http://download.interscience.wiley.com/cgi-bin/fulltext?ID=30003231&PLACEBO=IE.pdf&mode=pdf
10. Can you get Anti-Aldol product ...
10. Acyclic stereoselection. 54.
Extending the scope of the Evans asymmetric aldol reaction:
preparation of anti and "non-Evans" syn aldols
Michael A. Walker, Clayton H. Heathcock;
J. Org. Chem.; 1991; 56(20); 5747-5750.
http://pubs.acs.org:80/cgi-bin/archive.cgi/joceah/1991/56/i20/pdf/jo00020a006.pdf
11. Catalytic Aldol Reactions
11a. (S)-8a-Methyl-3,4,8,8a-tetrahydro-1,6(2H, 7H)-Naphthalenedione.
P. Buchschacher, A. Fürst, and J. Gutzwiller
Org. Synth.; 63; 37-43; Coll. vol. 7; 368-372.
http://www.orgsyn.org/orgsyn/default.asp?formgroup=base_form_group&dbname=orgsyn
11b. Enantioselective total synthesis of a protosterol,
3.beta.,20-dihydroxyprotost-24-ene
E. J. Corey, Scott C. Virgil;
J. Am. Chem. Soc.; 1990; 112(17); 6429-6431.
http://pubs.acs.org:80/cgi-bin/archive.cgi/jacsat/1990/112/i17/pdf/ja00173a059.pdf
11c. Enantioselective Organocatalysis.
P. I. Dalko, L. Moisan;
Angew. Chem. Int. Ed.; (2001); 40(20); 3726-3748.
http://download.interscience.wiley.com/cgi-bin/fulltext?ID=85515465&PLACEBO=IE.pdf&mode=pdf
11d. Asymmetric Aminocatalysis
B. List
SynLett; (2001); 1675-1686.
http://www.thieme-connect.com/BASScgi/4?Sprache=EN&FID=Start&NextFID=JournalTOC&JournalKey=91
12. Cataltic Asymmetric Aldol Chemistry (Keck/Carreira)
12a. Pronounced Solvent and Concentration Effects in an Enantioselective Mukaiyama Aldol Condensation Using BINOL-Titanium(IV) Catalysts
Gary E. Keck, Dhileepkumar Krishnamurthy;
J. Am. Chem. Soc.; 1995; 117(8); 2363-2364.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i08/pdf/ja00113a031.pdf
12b. Advances in catalytic, enantioselective aldol addition reactions with novel Ti(IV) complexes
E. M. Carreira and R. A. Singer
Drug Discovery Today; (1996); 1(4); 145-150.
12c. Catalytic, Enantioselective Aldol Additions with Methyl and Ethyl Acetate O-Silyl Enolates:
A Chiral Tridentate Chelate as a Ligand for Titanium(IV)
Erick M. Carreira, Robert A. Singer, Wheeseong Lee;
J. Am. Chem. Soc.; 1994; 116(19); 8837-8838.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1994/116/i19/pdf/ja00098a065.pdf
12d. An In Situ Procedure for Catalytic, Enantioselective Acetate Aldol Addition.
Application to the Synthesis of (R)-(-)-Epinephrine.
R. A. Singer and E. M. Carreira
Tetrahedron Lett.; (1997); 38(6); 927-930.
12e. Total Synthesis of Macrolactin A with Versatile Catalytic, Enantioselective Dienolate Aldol Addition Reactions.
Y. Kim, R. A. Singer, E. M. Carreira
Angew. Chem. Int. Ed.; (1998); 37(9); 1261-1263.
http://download.interscience.wiley.com/cgi-bin/fulltext?ID=10004747&PLACEBO=IE.pdf&mode=pdf
12f. Catalytic, Enantioselective Acetone Aldol Additions with 2-Methoxypropene
Erick M. Carreira, Wheeseong Lee, Robert A. Singer;
J. Am. Chem. Soc.; 1995; 117(12); 3649-3650.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i12/pdf/ja00117a049.pdf
12g. Catalytic, Enantioselective Dienolate Additions to Aldehydes:
Preparation of Optically Active Acetoacetate Aldol Adducts
Robert A. Singer, Erick M. Carreira;
J. Am. Chem. Soc.; 1995; 117(49); 12360-12361.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i49/pdf/ja00154a049.pdf
13. Catalytic Asymmetric Aldol (Lewis Acid ...)
13a. Chiral Bis(oxazoline) Copper(II) Complexes:
Versatile Catalysts for Enantioselective Cycloaddition, Aldol, Michael, and Carbonyl Ene Reactions
Johnson, J. S.; Evans, D. A.;
Acc. Chem. Res.; (Article); 2000; 33(6); 325-335.
http://pubs.acs.org/cgi-bin/article.cgi/achre4/2000/33/i06/pdf/ar960062n.pdf
13b1. C2-Symmetric Copper(II) Complexes as Chiral Lewis Acids.
Scope and Mechanism of the Catalytic Enantioselective Aldol Additions of Enolsilanes to Pyruvate Esters
Evans, D. A.; Burgey, C. S.; Kozlowski, M. C.; Tregay, S. W.;
J. Am. Chem. Soc.; (Article); 1999; 121(4); 686-699.
http://pubs.acs.org/cgi-bin/article.cgi/jacsat/1999/121/i04/pdf/ja982983u.pdf
Supporting Information
http://pubs.acs.org/cgi-bin/suppinfo.pl?ja982983u
13b2. C2-Symmetric Copper(II) Complexes as Chiral Lewis Acids.
Scope and Mechanism of Catalytic Enantioselective Aldol Additions of Enolsilanes to (Benzyloxy)acetaldehyde
Evans, D. A.; ,,, Staples, R. J.;
J. Am. Chem. Soc.; (Article); 1999; 121(4); 669-685.
http://pubs.acs.org/cgi-bin/article.cgi/jacsat/1999/121/i04/pdf/ja9829822.pdf
Supporting Information
http://pubs.acs.org/cgi-bin/suppinfo.pl?ja9829822
13c. C2-Symmetric Copper(II) Complexes as Chiral Lewis Acids.
Catalytic Enantioselective Aldol Additions of Silylketene Acetals to (Benzyloxy)acetaldehyde
Evans, D. A.; Murry, J. A.; Kozlowski, M. C.;
J. Am. Chem. Soc.; (Communication); 1996; 118(24); 5814-5815.
http://pubs.acs.org/cgi-bin/gap.cgi/jacsat/1997/119/i33/pdf/ja971521y.pdf
Supporting Information
http://pubs.acs.org/cgi-bin/suppinfo.sh?jacsat/119/7893/ja971521y
13d. C2-Symmetric Copper(II) Complexes as Chiral Lewis Acids.
Catalytic Enantioselective Aldol Additions of Enolsilanes to Pyruvate Esters
Evans, D. A.; Kozlowski, M. C.; Burgey, C. S.; MacMillan, D. W. C.;
J. Am. Chem. Soc.; (Communication); 1997; 119(33); 7893-7894.
http://pubs.acs.org/cgi-bin/gap.cgi/jacsat/1997/119/i33/pdf/ja971521y.pdf
Supporting Information
http://pubs.acs.org/cgi-bin/suppinfo.sh?jacsat/119/7893/ja971521y
13e. C2-Symmetric Tin(II) Complexes as Chiral Lewis Acids.
Catalytic Enantioselective Anti Aldol Additions of Enolsilanes to Glyoxylate and Pyruvate Esters
Evans, D. A.; MacMillan, D. W. C.; Campos, K. R.;
J. Am. Chem. Soc.; (Communication); 1997; 119(44); 10859-10860.
http://pubs.acs.org/cgi-bin/gap.cgi/jacsat/1997/119/i44/pdf/ja972547s.pdf
Supporting Information
http://pubs.acs.org:80/cgi-bin/suppinfo.sh?jacsat/119/10859/ja972547s
13f. Application of Complex Aldol Reactions to the Total Synthesis of Phorboxazole B
Evans, D. A.; Fitch, D. M.; Smith, T. E.; Cee, V. J.;
J. Am. Chem. Soc.; (Article); 2000; 122(41); 10033-10046.
http://pubs.acs.org/cgi-bin/article.cgi/jacsat/2000/122/i41/pdf/ja002356g.pdf
Supporting Information
http://pubs.acs.org/cgi-bin/suppinfo.pl?ja002356g
14. Aldol Reaction with Tin enolates / Organocatalytic ...
14a. C2-Symmetric Tin(II) Complexes as Chiral Lewis Acids.
Catalytic Enantioselective Anti Aldol Additions of Enolsilanes to Glyoxylate and Pyruvate Esters
Evans, D. A.; MacMillan, D. W. C.; Campos, K. R.;
J. Am. Chem. Soc.; (Communication); 1997; 119(44); 10859-10860.
http://pubs.acs.org/cgi-bin/gap.cgi/jacsat/1997/119/i44/pdf/ja972547s.pdf
Supporting Information
http://pubs.acs.org/cgi-bin/suppinfo.sh?jacsat/119/10859/ja972547s
14b. Enantioselective Aldol Reaction of Tin Enolates with Aldehydes Catalyzed by BINAP·Silver(I) Complex
Yanagisawa, A.; Matsumoto, Y.; Nakashima, H.; Asakawa, K.; Yamamoto, H.;
J. Am. Chem. Soc.; (Communication); 1997; 119(39); 9319-9320.
http://pubs.acs.org/cgi-bin/gap.cgi/jacsat/1997/119/i39/pdf/ja970203w.pdf
Supproting Information
http://pubs.acs.org/cgi-bin/suppinfo.sh?jacsat/119/9319/ja970203w
14c.. Asymmetric Catalysis of Aldol Reactions with Chiral Lewis Bases
Denmark, S. E.; Stavenger, R. A.;
Acc. Chem. Res.; (Article); 2000; 33(6); 432-440.
http://pubs.acs.org/cgi-bin/article.cgi/achre4/2000/33/i06/pdf/ar960027g.pdf
15.Nucleophilic Ketene/Aldol Reaction
15a. One-Pot, Catalytic, Asymmetric Syntheses of All Four Stereoisomers of a Dipropionate Synthon
Calter, M. A.; Guo, X.;
J. Org. Chem.; (Communication); 1998; 63(16); 5308-5309.
http://pubs.acs.org/cgi-bin/gap.cgi/joceah/1998/63/i16/pdf/jo9808977.pdf
Supporting Information
http://pubs.acs.org/cgi-bin/suppinfo.sh?joceah/63/5308/jo9808977
15b. Catalytic, Asymmetric Dimerization of Methylketene
Calter, M. A.;
J. Org. Chem.; (Communication); 1996; 61(23); 8006-8007.
http://pubs.acs.org/cgi-bin/gap.cgi/joceah/1996/61/i23/pdf/jo961721c.pdf
Suppoorting Information
http://pubs.acs.org/cgi-bin/suppinfo.sh?joceah/61/8006/jo961721c
16.Direct Catalytic Asymmetric ..
16a. Asymmetric catalysis with heterobimetallic compounds.
Shibasaki, M.; Sasai, H.; Arai, T.;
Angew. Chem. Int. Ed. Engl.; 1997; 36(12); 1237-1256.
16b. Direct Catalytic Asymmetric Aldol Reaction
Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M.;
J. Am. Chem. Soc.; 1999; 121(17); 4168-4178.
http://pubs.acs.org/cgi-bin/article.cgi/jacsat/1999/121/i17/pdf/ja990031y.pdf
Supporting Information
http://pubs.acs.org/cgi-bin/suppinfo.pl?ja990031y
16c. Asymmetric Aldol Reaction via a Dinuclear Zinc Catalyst: -Hydroxyketones as Donors
Trost, B. M.; Ito, H.; Silcoff, E. R.;
J. Am. Chem. Soc.; (Communication); 2001; 123(14); 3367-3368.
http://pubs.acs.org/cgi-bin/article.cgi/jacsat/2001/123/i14/pdf/ja003871h.pdf
Supporting Information
http://pubs.acs.org/cgi-bin/suppinfo.pl?ja003871h
16d. Direct Asymmetric Aldol Reactions of Acetone Using Bimetallic Zinc Catalysts
Trost, B. M.; Silcoff, E. R.; Ito, H.;
Org. Lett.; (Communication); 2001; 3(16); 2497-2500.
http://pubs.acs.org/journals/query/subscriberResults.jsp
Supporting Information
http://pubs.acs.org/cgi-bin/suppinfo.pl?ol0161211
17. Allyl and Crotyl Metals
17a. Diastereogenic addition of crotylmetal compounds to aldehydes
Hoffmann, R. W.
Angew. Chem. Int. Ed. Engl.; 1982; 21(8); 555-566.
17b. The unambiguous specification of the steric course of asymmetric syntheses.
Seebach, D.; Prelog V.
Angew. Chem. Int. Ed. Engl.; 1982; 21(9); 654-660.
17c. On the stereochemistry of allylmetal-aldehyde condensations.
Denmark, Scott E.; Weber, Eric J.
Helvetica Chimica Acta.; (1983); 66(6); 1655-60.
17d. Allyl organometallics.
Roush, W. R.
Comp. Org. Synth.; (1991); 2(1); 1-53.
MIL-8 REF QD C535 1991
17e. Asymmetric synthesis using diisopropyl tartrate modified (E)- and (Z)-crotylboronates: preparation of the chiral crotylboronates and reactions with achiral aldehydes
William R. Roush, Kaori Ando, Daniel B. Powers, Alan D. Palkowitz, Ronald L. Halterman;
J. Am. Chem. Soc.; 1990; 112(17); 6339-6348.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1990/112/i17/pdf/ja00173a023.pdf
17f. Stereoselective synthesis of alcohols. XX.
Diastereoselective addition of g-alkoxyallylboronates to aldehydes.
Hoffmann, Reinhard W.; Kemper, Bruno; Metternich, Rainer; Lehmeier, Thomas.
Liebigs Ann. Chem.; (1985); (11); 2246-60.
18. Stereoselectivity in a Type II ...
18a. Further studies on chromium(II)-mediated homoallylic alcohol syntheses.
Lewis, Michael D.; Kishi, Yoshito.
Tetrahedron Lett.; (1982); 23(23); 2343-6.
18b. Optically active alpha-chloro-(E)-crotylboronate esters by allyl rearrangement.
Hoffmann, Reinhard W.; Dresely, Stefan.
Angew. Chem. Int. Ed. Engl.; (1986); 25(2); 189-190.
18c. Diastereoselective Reactions of Chiral Allyl and Allenyl Silanes with Activated C:X .pi.-Bonds
Craig E. Masse, James S. Panek;
Chem. Rev.; 1995; 95(5); 1293-1316.
http://pubs.acs.org/cgi-bin/archive.cgi/chreay/1995/95/i05/pdf/cr00037a008.pdf
18d. Total Synthesis of Oleandolide
Hu, T.; Takenaka, N.; Panek, J. S.;
J. Am. Chem. Soc.; (Communication); 1999; 121(39); 9229-9230.
http://pubs.acs.org/cgi-bin/article.cgi/jacsat/1999/121/i39/pdf/ja992370x.pdf
Supporting Information
http://pubs.acs.org/cgi-bin/suppinfo.pl?ja992370x
19. Chiral Ligands on the Metal
19a. Enantioselective synthesis of homoallyl alcohols via chiral allyl boric acid esters.
Herold, Thomas; Hoffmann, Reinhard W.
Angew. Chem. Int. Ed. Engl.; (1978); 17(10); 768-769.
19b. Highly enantioselective additions of a chirally modified allylboron reagent to aldehydes.
Reetz, Manfred T.; Zierke, T.
Chem. Ind. (London); (1988); (20); 663-4.
19c. A practical and efficient method for enantioselective allylation of aldehydes
E. J. Corey, Chan Mo Yu, Sung Soo Kim;
J. Am. Chem. Soc.; 1989; 111(14); 5495-5496.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1989/111/i14/pdf/ja00196a082.pdf
19d. A practical and general enantioselective synthesis of chiral propa-1,2-dienyl and propargyl carbinols
E. J. Corey, Chan Mo Yu, Duck Hyung Lee;
J. Am. Chem. Soc.; 1990; 112(2); 878-879.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1990/112/i02/pdf/ja00158a064.pdf
19e. Asymmetric addition of (E)- and (Z)-crotyl-trans-2,5-dimethylborolanes to aldehydes
Jordi Garcia, Byeong Moon Kim, Satoru Masamune;
J. Org. Chem.; 1987; 52(21); 4831-4832.
http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1987/52/i21/pdf/jo00230a043.pdf
19f. Chiral synthesis via organoboranes. 36.
Exceptionally enantioselective allylborations of representative heterocyclic aldehydes at -100 .degree.C under salt-free conditions
Uday S. Racherla, Yi Liao, Herbert C. Brown;
J. Org. Chem.; 1992; 57(24); 6614-6617.
http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1992/57/i24/pdf/jo00050a045.pdf
19g. Chiral synthesis via organoboranes. 13.
A highly diastereoselective and enantioselective addition of [(Z)-.gamma.-alkoxyallyl]diisopinocampheylboranes to aldehydes
Herbert C. Brown, Prabhakar K. Jadhav, Krishna S. Bhat;
J. Am. Chem. Soc.; 1988; 110(5); 1535-1538.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1988/110/i05/pdf/ja00213a029.pdf
19h. Diastereo- and enantioselective aldehyde addition reactions of 2-allyl-1,3,2-dioxaborolane-4,5-dicarboxylic esters,
a useful class of tartrate ester modified allylboronates
William R. Roush, Alan E. Walts, Lee K. Hoong;
J. Am. Chem. Soc.; 1985; 107(26); 8186-8190.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1985/107/i26/pdf/ja00312a062.pdf
19i. N,N'-dibenzyl-N,N'-ethylenetartramide: a rationally designed chiral auxiliary for the allylboration reaction
William R. Roush, Luca Banfi;
J. Am. Chem. Soc.; 1988; 110(12); 3979-3982.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1988/110/i12/pdf/ja00220a041.pdf
20. Roush System ...
20a. Solid-state and solution conformational analysis of tartrate-derived 1,3-dioxolanes and 1,3,2-dioxaborolanes
William R. Roush, Andrew M. Ratz, Jill A. Jablonowski;
J. Org. Chem.; 1992; 57(7); 2047-2052.
http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1992/57/i07/pdf/jo00033a027.pdf
20b. N,N'-dibenzyl-N,N'-ethylenetartramide: a rationally designed chiral auxiliary for the allylboration reaction
William R. Roush, Luca Banfi;
J. Am. Chem. Soc.; 1988; 110(12); 3979-3982.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1988/110/i12/pdf/ja00220a041.pdf
20c. N,N'-Bis(2,2,2-trifluoroethyl)-N,N'-ethylenetartramide:
An Improved Chiral Auxiliary for the Asymmetric Allylboration Reaction
William R. Roush, Paul T. Grover;
J. Org. Chem.; 1995; 60(12); 3806-3813.
http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1995/60/i12/pdf/jo00117a036.pdf
21. Lewis Acid Catalyzed ...
21a. Chiral (Acyloxy)borane Catalyzed Asymmetric Allylation of Aldehydes
Furuta, Kyoji; Mouri, Makoto; Yamamoto, Hisashi;
SynLett 1991; (8); 561-562.
http://www.thieme-connect.com/BASScgi/4?Sprache=EN&FID=Start&NextFID=JournalTOC&JournalKey=91
21b. Catalytic asymmetric synthesis of homoallylic alcohols
Anna Luisa Costa, Maria Giulia Piazza, Emilio Tagliavini, Claudio Trombini, Achille Umani-Ronchi;
J. Am. Chem. Soc.; 1993; 115(15); 7001-7002.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1993/115/i15/pdf/ja00068a079.pdf
21c. Catalytic asymmetric allylation of aldehydes
Gary E. Keck, Kenneth H. Tarbet, Leo S. Geraci;
J. Am. Chem. Soc.; 1993; 115(18); 8467-8468.
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1993/115/i18/pdf/ja00071a074.pdf
21d. The Formyl C-H--O Hydrogen Bond As a Key to Transition-State Organization in Enantioselective Allylation, Aldol and Diels-Alder Reactions Catalyzed by Chiral Lewis Acids.
E. J. Corey, David Barnes-Seeman and Thomas W. Lee
Tetrahedron Letters; 1997; 38(10); 1699-1702