The Aldol Reaction

 

1. Stereochemical Outcomes

 

1. The Stereochemistry of the Ivanov and Reformatsky Reactions. I

Howard E. Zimmerman, Marjorie D. Traxler;

J. Am. Chem. Soc.; 1957; 79(8); 1920-1923.

http://pubs.acs.org:80/journals/jacsat/archive.cgi/jacsat/1957/79/i08/pdf/ja01565a041.pdf

 

2. Boat Transition State

 

2a. Stereoselective aldol condensations via boron enolates

D. A. Evans, E. Vogel, J. V. Nelson;

J. Am. Chem. Soc.; 1979; 101(20); 6120-6123.

http://pubs.acs.org:80/journals/jacsat/archive.cgi/jacsat/1979/101/i20/pdf/ja00514a045.pdf

 

2b. Stereoselective aldol condensations via boron enolates

D. A. Evans, J. V. Nelson, E. Vogel, T. R. Taber;

J. Am. Chem. Soc.; 1981; 103(11); 3099-3111.

http://pubs.acs.org:80/journals/jacsat/archive.cgi/jacsat/1981/103/i11/pdf/ja00401a031.pdf

 

2c. E- and Z-vinyloxyboranes (alkenyl borinates):

stereoselective formation and aldol condensation

Satoru Masamune, Sachio Mori, David Van Horn and Dee W. Brooks

Tetrahedron Letters; 1979; 20(19), 1665-1668.

 

2d. Stereoselective synthesis of beta-hydroxy-alpha-methylcarboxylic acid thiol esters via vinyloxyboranes

Masahiro Hirama and Satoru Masamune

Tetrahedron Letters; 1979; 20(24), 2225-2228.

 

2e. Stereoselective synthesis of beta-hydroxy-alpha-methylketones via z- and e-vinyloxyboranes generated directly from cyclohexyl ethyl ketone

David E. Van Horn and Satoru Masamune

Tetrahedron Letters; 1979; 20(24), 2229-2232.

 

2f. Use of the E-vinyloxyborane derived from S-phenyl propanethioate for stereospecific aldol-type condensation.

A simplified synthesis of the prelog-djerassi lactonic acid, Pages 3937-3940

Masahiro Hirama, David S. Garvey, Linda D.-L. Lu and Satoru Masamune

Tetrahedron Letters; 1979; 20(41), 3937-3940.

 

3.  Soft Enolizatiion

 

3a. Dicyclohexyliodoborane/Triethylamine -

a new reagent which achieves the facile enolboration of esters and tertiary amides

Herbert C. Brown, and Kumaraperumal Ganesan

Tetrahedron Letters; 1992; 33(24), 3421-3424.

 

3b. Stereoselective aldol condensations via boron enolates

D. A. Evans, J. V. Nelson, E. Vogel, T. R. Taber;

J. Am. Chem. Soc.; 1981; 103(11); 3099-3111.

http://pubs.acs.org:80/journals/jacsat/archive.cgi/jacsat/1981/103/i11/pdf/ja00401a031.pdf

 

3c. Major effect of the leaving group in dialkylboron chlorides and triflates in controlling the stereospecific conversion of ketones into either [E]- or [Z]-enol borinates

Herbert C. Brown, Raj K. Dhar, Raman K. Bakshi, Paul K. Pandiarajan, Bakthan Singaram;

J. Am. Chem. Soc.; 1989; 111(9); 3441-3442

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1989/111/i09/pdf/ja00191a058.pdf

 

3d. Enolboration. 4. An examination of the effect of the leaving group (X) on the stereoselective enolboration of ketones with various R2BX/triethylamine.

New reagents for the selective generation of either Z or E enol borinates from representative ketones

Herbert C. Brown, Kumaraperumal Ganesan, Raj K. Dhar;

J. Org. Chem.; 1993; 58(1); 147-153.

http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1993/58/i01/pdf/jo00053a028.pdf

 

4. Open Transition State ...

 

4a. Acyclic stereoselection. 27. Simple diastereoselection in the lewis acid mediated reactions of enolsilanes with aldehydes.

Clayton H. Heathcock, , Kathleen T. Hug and Lee A. Flippin

Tetrahedron Letters; 1984; 25(52), 5973-5976.

 

4b. Acyclic stereoselection. 54. Extending the scope of the Evans asymmetric aldol reaction: preparation of anti and "non-Evans" syn aldols

Michael A. Walker, Clayton H. Heathcock;

J. Org. Chem.; 1991; 56(20); 5747-5750.

http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1991/56/i20/pdf/jo00020a006.pdf

 

5. Diastereoselective Aldol Reactions

 

5a. Concerning the diastereofacial selectivity of the aldol reactions of .alpha.-methyl chiral aldehydes and lithium and boron propionate enolates

William R. Roush;

J. Org. Chem.; 1991; 56(13); 4151-4157.

http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1991/56/i13/pdf/jo00013a015.pdf

 

5b. Stereoselective aldol condensations.    

D. A. Evans; J. V. Nelson; T. R. Taber;

Top. Stereochem.;  (1982); 13; 1-115.

 

5c. Double Stereodifferentiating Aldol Reactions.

The Documentation of "Partially Matched" Aldol Bond Constructions in the Assemblage of Polypropionate Systems

David A. Evans, Michael J. Dart, Joseph L. Duffy, Dale L. Rieger;

J. Am. Chem. Soc.; 1995; 117(35); 9073-9074.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i35/pdf/ja00140a027.pdf

 

6. Aldols with Chiral Enolates

 

6a. Stereoselective aldol condensation.

Use of chiral boron enolates

Satoru Masamune, William Choy, Kerdesky Francis A. J., Barbara Imperiali;

J. Am. Chem. Soc.; 1981; 103(6); 1566-1568.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1981/103/i06/pdf/ja00396a050.pdf

 

6b. Diastereo- and Enantioselective Aldol Reactions via alpha-silyl ketones,

Asymmetric Synthesis of the Aggregation Pheromone Sitophilure

D. Enders and B.B. Lohray

Angew. Chem. Int. Ed. Engl.; (1988); 27(4); 581-583.

 

7. Evan's imide technology

 

7a. Enantioselective aldol condensations. 2.

Erythro-selective chiral aldol condensations via boron enolates

D. A. Evans, J. Bartroli, T. L. Shih;

J. Am. Chem. Soc.; 1981; 103(8); 2127-2129.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1981/103/i08/pdf/ja00398a058.pdf

 

7b. Stereoselective reactions of chiral enolates.

Application to the synthesis of (+)-Prelog-Djerassi Lactonic Acid.

D. A. Evans, J. Bartroli;

Tetrahedron Lett.; (1982); 23(8); 807-810.

 

7c. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of .alpha.-substituted carboxylic acid derivatives

D. A. Evans, M. D. Ennis, D. J. Mathre;

J. Am. Chem. Soc.; 1982; 104(6); 1737-1739.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1982/104/i06/pdf/ja00370a050.pdf

 

8. Recall cleavage of Evan's auxiliaries

 

8a. Contrasteric carboximide hydrolysis with lithium hydroperoxide.

D. A. Evans, T. C. Britton, J. A. Ellman

Tetrahedron Lett.; (1987); 28(49); 6141-6144

 

8b. The total syntheses of the isodityrosine-derived cyclic tripeptides OF4949-III and K-13.

Determination of the absolute configuration of K-13.

David A. Evans and Jonathan A. Ellman

J. Am. Chem. Soc.; 1989; 111(3); 1063-1072.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1989/111/i03/pdf/ja00185a042.pdf

 

8c. Total synthesis of (+)-A83543A [(+)-lepicidin A].

David A. Evans and W. Cameron Black

J. Am. Chem. Soc.; 1993; 115( ); 4497-.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1993/115/i11/pdf/ja00064a011.pdf

 

8d. Facile reduction of ethyl thiol esters to aldehydes:

application to a total synthesis of (+)-neothramycin A methyl ether.

Tohru Fukuyama, Shao Cheng Lin, and Leping Li

J. Am. Chem. Soc.; 1990; 112( ); 7050-.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1990/112/i19/pdf/ja00175a043.pdf

 

9. Acetate Aldols

 

9a. Enantioselective aldol condensations.

2. Erythro-selective chiral aldol condensations via boron enolates

D. A. Evans, J. Bartroli, and T. L. Shih

J. Am. Chem. Soc.; 1981; 103(8); 2127 - 2129.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1981/103/i08/pdf/ja00398a058.pdf

 

9b. Camphor derivatives as chiral auxiliaries in asymmetric synthesis.

W. Oppolzer

Tetrahedron; (1987); 43(18); 1969-2004

 

9c. Diastereoselective Aldol Reaction with an Acetate Enolate:

2,6-Bis(2-isopropylphenyl)-3,5-dimethylphenol as an Extremely Effective Chiral Auxiliary

Susumu Saito, Keiko Hatanaka, Taichi Kano, Hisashi Yamamoto

Angew. Chem. Int. Ed.; (1998); 37(24); 3378-3381.

http://download.interscience.wiley.com/cgi-bin/fulltext?ID=30003231&PLACEBO=IE.pdf&mode=pdf

 

10. Can you get Anti-Aldol product ...

 

10. Acyclic stereoselection. 54.

Extending the scope of the Evans asymmetric aldol reaction:

preparation of anti and "non-Evans" syn aldols

Michael A. Walker, Clayton H. Heathcock;

J. Org. Chem.; 1991; 56(20); 5747-5750.

http://pubs.acs.org:80/cgi-bin/archive.cgi/joceah/1991/56/i20/pdf/jo00020a006.pdf

 

11. Catalytic Aldol Reactions

 

11a. (S)-8a-Methyl-3,4,8,8a-tetrahydro-1,6(2H, 7H)-Naphthalenedione.

P. Buchschacher, A. Fürst, and J. Gutzwiller

Org. Synth.; 63; 37-43; Coll. vol. 7; 368-372.

http://www.orgsyn.org/orgsyn/default.asp?formgroup=base_form_group&dbname=orgsyn

 

11b. Enantioselective total synthesis of a protosterol,

3.beta.,20-dihydroxyprotost-24-ene

E. J. Corey, Scott C. Virgil;

J. Am. Chem. Soc.; 1990; 112(17); 6429-6431.

http://pubs.acs.org:80/cgi-bin/archive.cgi/jacsat/1990/112/i17/pdf/ja00173a059.pdf

 

11c. Enantioselective Organocatalysis.

P. I. Dalko, L. Moisan;

Angew. Chem. Int. Ed.; (2001); 40(20); 3726-3748.

http://download.interscience.wiley.com/cgi-bin/fulltext?ID=85515465&PLACEBO=IE.pdf&mode=pdf

 

11d. Asymmetric Aminocatalysis

B. List

SynLett; (2001); 1675-1686.

http://www.thieme-connect.com/BASScgi/4?Sprache=EN&FID=Start&NextFID=JournalTOC&JournalKey=91

 

12. Cataltic Asymmetric Aldol Chemistry (Keck/Carreira)

 

12a. Pronounced Solvent and Concentration Effects in an Enantioselective Mukaiyama Aldol Condensation Using BINOL-Titanium(IV) Catalysts

Gary E. Keck, Dhileepkumar Krishnamurthy;

J. Am. Chem. Soc.; 1995; 117(8); 2363-2364.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i08/pdf/ja00113a031.pdf

 

12b. Advances in catalytic, enantioselective aldol addition reactions with novel Ti(IV) complexes

E. M. Carreira and R. A. Singer

Drug Discovery Today; (1996); 1(4); 145-150.

 

12c. Catalytic, Enantioselective Aldol Additions with Methyl and Ethyl Acetate O-Silyl Enolates:

A Chiral Tridentate Chelate as a Ligand for Titanium(IV)

Erick M. Carreira, Robert A. Singer, Wheeseong Lee;

J. Am. Chem. Soc.; 1994; 116(19); 8837-8838.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1994/116/i19/pdf/ja00098a065.pdf

 

12d. An In Situ Procedure for Catalytic, Enantioselective Acetate Aldol Addition.

Application to the Synthesis of (R)-(-)-Epinephrine.

R. A. Singer and E. M. Carreira

Tetrahedron Lett.; (1997); 38(6); 927-930.

http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6THS-3S95J15-94-1&_cdi=5290&_orig=browse&_coverDate=02%2F10%2F1997&_sk=999619993&view=c&wchp=dGLbVtz-lSztA&_acct=C000050264&_version=1&_userid=1010281&md5=097c36390d34b8aff3981080775dd64d&ie=f.pdf

 

12e. Total Synthesis of Macrolactin A with Versatile Catalytic, Enantioselective Dienolate Aldol Addition Reactions.

Y. Kim, R. A. Singer, E. M. Carreira

Angew. Chem. Int. Ed.; (1998); 37(9); 1261-1263.

http://download.interscience.wiley.com/cgi-bin/fulltext?ID=10004747&PLACEBO=IE.pdf&mode=pdf

 

12f. Catalytic, Enantioselective Acetone Aldol Additions with 2-Methoxypropene

Erick M. Carreira, Wheeseong Lee, Robert A. Singer;

J. Am. Chem. Soc.; 1995; 117(12); 3649-3650.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i12/pdf/ja00117a049.pdf

 

12g. Catalytic, Enantioselective Dienolate Additions to Aldehydes:

Preparation of Optically Active Acetoacetate Aldol Adducts

Robert A. Singer, Erick M. Carreira;

J. Am. Chem. Soc.; 1995; 117(49); 12360-12361.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i49/pdf/ja00154a049.pdf

 

13. Catalytic Asymmetric Aldol (Lewis Acid ...)

 

13a. Chiral Bis(oxazoline) Copper(II) Complexes:

Versatile Catalysts for Enantioselective Cycloaddition, Aldol, Michael, and Carbonyl Ene Reactions

Johnson, J. S.; Evans, D. A.;

Acc. Chem. Res.; (Article); 2000; 33(6); 325-335.

http://pubs.acs.org/cgi-bin/article.cgi/achre4/2000/33/i06/pdf/ar960062n.pdf

 

13b1. C2-Symmetric Copper(II) Complexes as Chiral Lewis Acids.

Scope and Mechanism of the Catalytic Enantioselective Aldol Additions of Enolsilanes to Pyruvate Esters

Evans, D. A.; Burgey, C. S.; Kozlowski, M. C.; Tregay, S. W.;

J. Am. Chem. Soc.; (Article); 1999; 121(4); 686-699.

http://pubs.acs.org/cgi-bin/article.cgi/jacsat/1999/121/i04/pdf/ja982983u.pdf

Supporting Information

http://pubs.acs.org/cgi-bin/suppinfo.pl?ja982983u

 

13b2. C2-Symmetric Copper(II) Complexes as Chiral Lewis Acids.

Scope and Mechanism of Catalytic Enantioselective Aldol Additions of Enolsilanes to (Benzyloxy)acetaldehyde

Evans, D. A.; ,,, Staples, R. J.;

J. Am. Chem. Soc.; (Article); 1999; 121(4); 669-685.

http://pubs.acs.org/cgi-bin/article.cgi/jacsat/1999/121/i04/pdf/ja9829822.pdf

Supporting Information

http://pubs.acs.org/cgi-bin/suppinfo.pl?ja9829822

 

13c. C2-Symmetric Copper(II) Complexes as Chiral Lewis Acids.

Catalytic Enantioselective Aldol Additions of Silylketene Acetals to (Benzyloxy)acetaldehyde

Evans, D. A.; Murry, J. A.; Kozlowski, M. C.;

J. Am. Chem. Soc.; (Communication); 1996; 118(24); 5814-5815.

http://pubs.acs.org/cgi-bin/gap.cgi/jacsat/1997/119/i33/pdf/ja971521y.pdf

Supporting Information

http://pubs.acs.org/cgi-bin/suppinfo.sh?jacsat/119/7893/ja971521y

 

13d. C2-Symmetric Copper(II) Complexes as Chiral Lewis Acids.

Catalytic Enantioselective Aldol Additions of Enolsilanes to Pyruvate Esters

Evans, D. A.; Kozlowski, M. C.; Burgey, C. S.; MacMillan, D. W. C.;

J. Am. Chem. Soc.; (Communication); 1997; 119(33); 7893-7894. 

http://pubs.acs.org/cgi-bin/gap.cgi/jacsat/1997/119/i33/pdf/ja971521y.pdf

Supporting Information

http://pubs.acs.org/cgi-bin/suppinfo.sh?jacsat/119/7893/ja971521y

 

13e. C2-Symmetric Tin(II) Complexes as Chiral Lewis Acids.

Catalytic Enantioselective Anti Aldol Additions of Enolsilanes to Glyoxylate and Pyruvate Esters

Evans, D. A.; MacMillan, D. W. C.; Campos, K. R.;

J. Am. Chem. Soc.; (Communication); 1997; 119(44); 10859-10860.

http://pubs.acs.org/cgi-bin/gap.cgi/jacsat/1997/119/i44/pdf/ja972547s.pdf

Supporting Information

http://pubs.acs.org:80/cgi-bin/suppinfo.sh?jacsat/119/10859/ja972547s

 

13f. Application of Complex Aldol Reactions to the Total Synthesis of Phorboxazole B

Evans, D. A.; Fitch, D. M.; Smith, T. E.; Cee, V. J.;

J. Am. Chem. Soc.; (Article); 2000; 122(41); 10033-10046. 

http://pubs.acs.org/cgi-bin/article.cgi/jacsat/2000/122/i41/pdf/ja002356g.pdf

Supporting Information

http://pubs.acs.org/cgi-bin/suppinfo.pl?ja002356g

 

14. Aldol Reaction with Tin enolates / Organocatalytic ...

 

14a. C2-Symmetric Tin(II) Complexes as Chiral Lewis Acids.

Catalytic Enantioselective Anti Aldol Additions of Enolsilanes to Glyoxylate and Pyruvate Esters

Evans, D. A.; MacMillan, D. W. C.; Campos, K. R.;

J. Am. Chem. Soc.; (Communication); 1997; 119(44); 10859-10860.

http://pubs.acs.org/cgi-bin/gap.cgi/jacsat/1997/119/i44/pdf/ja972547s.pdf

Supporting Information

http://pubs.acs.org/cgi-bin/suppinfo.sh?jacsat/119/10859/ja972547s

 

14b. Enantioselective Aldol Reaction of Tin Enolates with Aldehydes Catalyzed by BINAP·Silver(I) Complex

Yanagisawa, A.; Matsumoto, Y.; Nakashima, H.; Asakawa, K.; Yamamoto, H.;

J. Am. Chem. Soc.; (Communication); 1997; 119(39); 9319-9320. 

http://pubs.acs.org/cgi-bin/gap.cgi/jacsat/1997/119/i39/pdf/ja970203w.pdf

Supproting Information

http://pubs.acs.org/cgi-bin/suppinfo.sh?jacsat/119/9319/ja970203w

 

14c.. Asymmetric Catalysis of Aldol Reactions with Chiral Lewis Bases

Denmark, S. E.; Stavenger, R. A.;

Acc. Chem. Res.; (Article); 2000; 33(6); 432-440. 

http://pubs.acs.org/cgi-bin/article.cgi/achre4/2000/33/i06/pdf/ar960027g.pdf

 

15.Nucleophilic Ketene/Aldol Reaction

 

15a. One-Pot, Catalytic, Asymmetric Syntheses of All Four Stereoisomers of a Dipropionate Synthon

Calter, M. A.; Guo, X.;

J. Org. Chem.; (Communication); 1998; 63(16); 5308-5309. 

http://pubs.acs.org/cgi-bin/gap.cgi/joceah/1998/63/i16/pdf/jo9808977.pdf

Supporting Information

http://pubs.acs.org/cgi-bin/suppinfo.sh?joceah/63/5308/jo9808977

 

15b. Catalytic, Asymmetric Dimerization of Methylketene

Calter, M. A.;

J. Org. Chem.; (Communication); 1996; 61(23); 8006-8007. 

http://pubs.acs.org/cgi-bin/gap.cgi/joceah/1996/61/i23/pdf/jo961721c.pdf

Suppoorting Information

http://pubs.acs.org/cgi-bin/suppinfo.sh?joceah/61/8006/jo961721c

 

16.Direct Catalytic Asymmetric ..

 

16a. Asymmetric catalysis with heterobimetallic compounds.    

Shibasaki, M.; Sasai, H.; Arai, T.;

Angew. Chem. Int. Ed. Engl.; 1997; 36(12); 1237-1256. 

 

16b. Direct Catalytic Asymmetric Aldol Reaction

Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M.;

J. Am. Chem. Soc.; 1999; 121(17); 4168-4178. 

http://pubs.acs.org/cgi-bin/article.cgi/jacsat/1999/121/i17/pdf/ja990031y.pdf

Supporting Information

http://pubs.acs.org/cgi-bin/suppinfo.pl?ja990031y

 

16c. Asymmetric Aldol Reaction via a Dinuclear Zinc Catalyst: -Hydroxyketones as Donors

Trost, B. M.; Ito, H.; Silcoff, E. R.;

J. Am. Chem. Soc.; (Communication); 2001; 123(14); 3367-3368. 

http://pubs.acs.org/cgi-bin/article.cgi/jacsat/2001/123/i14/pdf/ja003871h.pdf

Supporting Information

http://pubs.acs.org/cgi-bin/suppinfo.pl?ja003871h

 

16d. Direct Asymmetric Aldol Reactions of Acetone Using Bimetallic Zinc Catalysts

Trost, B. M.; Silcoff, E. R.; Ito, H.;

Org. Lett.; (Communication); 2001; 3(16); 2497-2500. 

http://pubs.acs.org/journals/query/subscriberResults.jsp

Supporting Information

http://pubs.acs.org/cgi-bin/suppinfo.pl?ol0161211

 

 

17. Allyl and Crotyl Metals

 

17a. Diastereogenic addition of crotylmetal compounds to aldehydes

Hoffmann, R. W.

Angew. Chem. Int. Ed. Engl.; 1982; 21(8); 555-566.

 

17b. The unambiguous specification of the steric course of asymmetric syntheses.

Seebach, D.; Prelog V.

Angew. Chem. Int. Ed. Engl.; 1982; 21(9); 654-660.

 

17c. On the stereochemistry of allylmetal-aldehyde condensations. 

Denmark, Scott E.; Weber, Eric J.

Helvetica Chimica Acta.; (1983); 66(6); 1655-60.

 

17d. Allyl organometallics.

Roush, W. R.

Comp. Org. Synth.; (1991); 2(1); 1-53.

MIL-8 REF QD C535 1991

 

17e. Asymmetric synthesis using diisopropyl tartrate modified (E)- and (Z)-crotylboronates: preparation of the chiral crotylboronates and reactions with achiral aldehydes

William R. Roush, Kaori Ando, Daniel B. Powers, Alan D. Palkowitz, Ronald L. Halterman;

J. Am. Chem. Soc.; 1990; 112(17); 6339-6348.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1990/112/i17/pdf/ja00173a023.pdf

 

17f. Stereoselective synthesis of alcohols.  XX. 

Diastereoselective addition of g-alkoxyallylboronates to aldehydes.    

Hoffmann, Reinhard W.; Kemper, Bruno; Metternich, Rainer; Lehmeier, Thomas.   

Liebigs Ann. Chem.; (1985); (11); 2246-60. 

 

18. Stereoselectivity in a Type II ...

 

18a. Further studies on chromium(II)-mediated homoallylic alcohol syntheses.    

Lewis, Michael D.; Kishi, Yoshito. 

Tetrahedron Lett.; (1982); 23(23); 2343-6. 

 

18b. Optically active alpha-chloro-(E)-crotylboronate esters by allyl rearrangement.    

Hoffmann, Reinhard W.; Dresely, Stefan.   

Angew. Chem. Int. Ed. Engl.; (1986);  25(2); 189-190.

 

18c. Diastereoselective Reactions of Chiral Allyl and Allenyl Silanes with Activated C:X .pi.-Bonds

Craig E. Masse, James S. Panek;

Chem. Rev.; 1995; 95(5); 1293-1316.

http://pubs.acs.org/cgi-bin/archive.cgi/chreay/1995/95/i05/pdf/cr00037a008.pdf

 

18d. Total Synthesis of Oleandolide

Hu, T.; Takenaka, N.; Panek, J. S.;

J. Am. Chem. Soc.; (Communication); 1999; 121(39); 9229-9230. 

http://pubs.acs.org/cgi-bin/article.cgi/jacsat/1999/121/i39/pdf/ja992370x.pdf

Supporting Information

http://pubs.acs.org/cgi-bin/suppinfo.pl?ja992370x

 

 

19. Chiral Ligands on the Metal

 

19a. Enantioselective synthesis of homoallyl alcohols via chiral allyl boric acid esters.     

Herold, Thomas; Hoffmann, Reinhard W.   

Angew. Chem. Int. Ed. Engl.; (1978); 17(10); 768-769.

 

19b. Highly enantioselective additions of a chirally modified allylboron reagent to aldehydes.    

Reetz, Manfred T.; Zierke, T. 

Chem. Ind. (London); (1988); (20); 663-4.

 

19c. A practical and efficient method for enantioselective allylation of aldehydes

E. J. Corey, Chan Mo Yu, Sung Soo Kim;

J. Am. Chem. Soc.; 1989; 111(14); 5495-5496.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1989/111/i14/pdf/ja00196a082.pdf

 

19d. A practical and general enantioselective synthesis of chiral propa-1,2-dienyl and propargyl carbinols

E. J. Corey, Chan Mo Yu, Duck Hyung Lee;

J. Am. Chem. Soc.; 1990; 112(2); 878-879.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1990/112/i02/pdf/ja00158a064.pdf

 

19e. Asymmetric addition of (E)- and (Z)-crotyl-trans-2,5-dimethylborolanes to aldehydes

Jordi Garcia, Byeong Moon Kim, Satoru Masamune;

J. Org. Chem.; 1987; 52(21); 4831-4832.

http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1987/52/i21/pdf/jo00230a043.pdf

 

19f. Chiral synthesis via organoboranes. 36.

Exceptionally enantioselective allylborations of representative heterocyclic aldehydes at -100 .degree.C under salt-free conditions

Uday S. Racherla, Yi Liao, Herbert C. Brown;

J. Org. Chem.; 1992; 57(24); 6614-6617.

http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1992/57/i24/pdf/jo00050a045.pdf

 

19g. Chiral synthesis via organoboranes. 13.

A highly diastereoselective and enantioselective addition of [(Z)-.gamma.-alkoxyallyl]diisopinocampheylboranes to aldehydes

Herbert C. Brown, Prabhakar K. Jadhav, Krishna S. Bhat;

J. Am. Chem. Soc.; 1988; 110(5); 1535-1538.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1988/110/i05/pdf/ja00213a029.pdf

 

19h. Diastereo- and enantioselective aldehyde addition reactions of 2-allyl-1,3,2-dioxaborolane-4,5-dicarboxylic esters,

a useful class of tartrate ester modified allylboronates

William R. Roush, Alan E. Walts, Lee K. Hoong;

J. Am. Chem. Soc.; 1985; 107(26); 8186-8190.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1985/107/i26/pdf/ja00312a062.pdf

 

19i. N,N'-dibenzyl-N,N'-ethylenetartramide: a rationally designed chiral auxiliary for the allylboration reaction

William R. Roush, Luca Banfi;

J. Am. Chem. Soc.; 1988; 110(12); 3979-3982.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1988/110/i12/pdf/ja00220a041.pdf

 

 

20. Roush System ...

 

20a. Solid-state and solution conformational analysis of tartrate-derived 1,3-dioxolanes and 1,3,2-dioxaborolanes

William R. Roush, Andrew M. Ratz, Jill A. Jablonowski;

J. Org. Chem.; 1992; 57(7); 2047-2052.

http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1992/57/i07/pdf/jo00033a027.pdf

 

20b. N,N'-dibenzyl-N,N'-ethylenetartramide: a rationally designed chiral auxiliary for the allylboration reaction

William R. Roush, Luca Banfi;

J. Am. Chem. Soc.; 1988; 110(12); 3979-3982.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1988/110/i12/pdf/ja00220a041.pdf

 

20c. N,N'-Bis(2,2,2-trifluoroethyl)-N,N'-ethylenetartramide:

An Improved Chiral Auxiliary for the Asymmetric Allylboration Reaction

William R. Roush, Paul T. Grover;

J. Org. Chem.; 1995; 60(12); 3806-3813.

http://pubs.acs.org/cgi-bin/archive.cgi/joceah/1995/60/i12/pdf/jo00117a036.pdf

 

 

21. Lewis Acid Catalyzed ...

 

21a. Chiral (Acyloxy)borane Catalyzed Asymmetric Allylation of Aldehydes

Furuta, Kyoji; Mouri, Makoto; Yamamoto, Hisashi;

SynLett 1991; (8); 561-562.

http://www.thieme-connect.com/BASScgi/4?Sprache=EN&FID=Start&NextFID=JournalTOC&JournalKey=91

 

21b. Catalytic asymmetric synthesis of homoallylic alcohols

Anna Luisa Costa, Maria Giulia Piazza, Emilio Tagliavini, Claudio Trombini, Achille Umani-Ronchi;

J. Am. Chem. Soc.; 1993; 115(15); 7001-7002.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1993/115/i15/pdf/ja00068a079.pdf

 

21c. Catalytic asymmetric allylation of aldehydes

Gary E. Keck, Kenneth H. Tarbet, Leo S. Geraci;

J. Am. Chem. Soc.; 1993; 115(18); 8467-8468.

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1993/115/i18/pdf/ja00071a074.pdf

 

21d. The Formyl C-H--O Hydrogen Bond As a Key to Transition-State Organization in Enantioselective Allylation, Aldol and Diels-Alder Reactions Catalyzed by Chiral Lewis Acids.

E. J. Corey, David Barnes-Seeman and Thomas W. Lee

Tetrahedron Letters; 1997; 38(10); 1699-1702

http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6THS-3S9M7VK-60-1&_cdi=5290&_orig=browse&_coverDate=03%2F10%2F1997&_sk=999619989&view=c&wchp=dGLbVtb-lSzBA&_acct=C000050264&_version=1&_userid=1010281&md5=0de3068152585ee387d56ea55bb62e5e&ie=f.pdf